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nichts anderes darstellen als ~Srtlich begrenzte Kristall- 
bereiche mit der e-Sm-bzw, der ABCACB-Struktur. 

Auch bei den Fehlern h~Sherer Ordnung [Fig. 3, 
Kurvenzug (2) usw.] ist die Symmetric der Darstellung 
klar erkennbar. Ferner stellen natfirlich auch hier 
wieder die Kurvenzfige der Stapelfehler Kurvenzfige 
yon Idealstrukturen dar. 

6. Simulation yon Kristallen mit Stapelfehlern durch 
Analog-Stromkreise 

Die entwickelte Symbolik ist geeignet, Kristalle mit 
Stapelfehlern durch elektrische Stromkreise zu simu- 
lieren. Betrachten wir einen realen Kristall mit Stapel- 
fehlern, so durchlfiuft z.B. im Wegdiagramm der Fig. 2 
ein Aufpunkt einen bestimmten Weg, wenn wir von 
der ersten zur letzten Netzebene vorwartsschreiten. 
Dieser Weg ist durch die Art der Struktur und die 
H~iufigkeit der einzelnen Stapelfehlertypen charakte- 
risiert. 

Denken wit uns nun dieses Wegdiagramm als elek- 
trisches Leitungsdiagramm und den Aufpunkt als 
elektrischen Impuls, so k6nnen wir, wenn wir an den 
'Weichen' statistische 'Gates' anbringen, den Aufbau 
des Kristalls simulieren. Weichen existieren im Weg- 
diagramm der Fig. 2 in den untersten Punkten des 
linken und mittleren Kreises, wie auch in den obersten 
Punkten des mittleren und rechten Kreises. Die sta- 
tistischen Gates sind so ehagestellt, dass mit einer 

bestimmten Wahrscheinlichkeit wi ( i= 1, 2, 3 u. 4) der 
gerade Weg und mit der Wahrscheinlichkeit 1 - w t  der 
krumme Weg eingeschlagen wird. 

Ffir die tats~ichliche Realisierung eines solchen 
Stromkreises ist es erstens notwendig, an bestimmten 
Stellen des Kreises ffir eine Abnahme eines Signals ffir 
die Steuerung eines Computerprogramms Vorsorge zu 
tragen. Zweitens sind Verzt~gerungsleitungen einzu- 
bauen, damit die abgenommenen Signale getrennt re- 
gistriert werden kSnnen. Ferner ist dann drittens noch 
an der am meisten durchlaufenen Stelle des Kreises 
ftir eine Verst/irkung bzw. Wiedererzeugung des Im- 
pulses zu sorgen. 

Mit einem solchen Analog-Stromkreis ist es z.B. 
m~Sglich, die Streuung yon Rtintgenstrahlen an einem 
beliebigen Kristall mit statistisch verteilten Stapel- 
fehlern zu behandeln und die Intensit~itsverteilung im 
k-Raum zu berechnen. Falls durch weitere Gate- 
Kreise f~r eine statistische )knderung der GriSssen wi 
gesorgt wird, k/Snnen die Effekte einer nicht statisti- 
schen Anordnung yon Stapelfehlern studiert werden. 
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Various mechanisms for the polytypic growth in zinc sulphide crystals have been discussed. It has been 
pointed out that the polytypic growth in this compound is a result of the ordering of f.c.c, microtwins 
along the (111) directions. A comparison between the structures actually found and those expected 
from consideration of the periodically repeated f.c.c, type microtwins shows a good agreement. The 
periodic occurrence of f.c.c, type microtwins has been shown to result from 2H structures containing 
growth faults only, when faults due to slip at alternate layers and axial screw dislocations operate 
simultaneously. This mechanism is assumed to operate only at a stage when crystals are growing, and 
it can successfully predict almost all structures which are actually found in ZnS polytypes. Only a few 
polytypes (three, 9R, 12R, and 21R, out of more than a hundred) with structures not fitting the above 
mechanism have been attributed to the insertion of periodic stacking faults in some other polytypes 
(which are generated in accordance with the proposed mechanism) at a later stage of the crystal growth. 

Introduction 

Polytypic growth is a phenomenon, characterized by 
the periodic repetition of stacking faults in close- 
packed planes of solids, leading to a series of new 
structures which are identical in the a and b directions 

and differ only in the c direction (perpendicular to 
the stacking of layers) of the unit cell. Each member of 
such a structure series is known as a polytype. Like 
SiC, PbI2, CdI2 and many other compounds, ZnS 
exhibits polytypic growth. The growth process of 
polytypes has been a subject of discussion for many 
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years. Numerous theories have so far been proposed 
but none of them seems to give a complete explana- 
tion. The screw dislocation mechanism, which was 
proposed by Frank (1951, 1952) for SiC polytypes and 
was developed further by Mitchell (1957) and Krishna 
& Verma (1965), cannot, as such, be applicable to ZnS 
polytypes. This is first because the stable phase (at the 
temperature at which ZnS polytypes are synthesized) 
is 2H, from which screw dislocations cannot produce 
polytypes (Mitchell, 1959), and secondly because the 
ZnS polytypes do not contain those basic units like 
33, 32, 11, 22 etc. in the Zhdanov symbol (Zhdanov & 
Minervina, 1946) which have been found in SiC and 
CdI2 polytypes. Mardix, Kalman & Steinberger (1968) 
proposed the mechanism of the periodic slip process 
but they did not mention the cause of periodic slips, 
and furthermore its efficiency is limited only to trans- 
forming one polytype to another. Daniels (1966) pro- 
posed that a suitably compounded system of axial 
(perfect or partial) and partial dislocations in the (0001) 
plane of 2H will produce polytypes. His proposal, 
however, has a drawback in that it introduces an in- 
creasing number of (11) structure units in the Zhdanov 
symbol of polytypes with an increasing number of 
layers in their unit cell. This model will also be in- 
efficient in producing many kinds of polytypes e.g. 
9R, 15R, 21R, 4H, 8H, 10H, 16H, 20H, 24H, 28H etc. 

More than a hundred ZnS polytypes with known 
crystal structures have so far been reported and there 
seems no upper limit on the number of polytypes. All 
these polytypes, except a few (9R, 12R and 21R), show 
the three following structural characteristics: 

(1) The (11) units in the Zhdanov symbol are absent. 
(2) All the possible numbers like 2, 3, 4, 5, 6, 7, 

• . . ,  35, . . .  etc. in the Zhdanov notation are found to 
appear. 

(3) The polytypes contain most of the layers in the 
f.c.c, arrangement such that the percentage, p, of this 
type of layer is always > 50%. 

Almost all the polytypes have been grown above 
1020°C. Thus any mechanism involving dislocations 
must start from 2H and the resulting structures should 
show the characteristics as mentioned above. Unfor- 
tunately none of the existing theories can explain the 
origin of these characteristics. The purpose of this 
paper is therefore to present a possible mechanism 
which can produce polytypes during the growth of 
ZnS crystals. 

Possible polytypic structures from f.c.c, microtwins 

The structural characteristics (2) and (3) indicate that 
a large number of 3C type units arranged in proper se- 
quence are present in ZnS polytypes. These type of 
structures therefore are expected to be derived from 
the f.c.c, type of microtwins which repeat periodically 
in the <111) directions. The relations between twins of 
an order of unit cells (referred to as microtwins in 

this paper) and polymorphs or polytypes have been 
discussed by Ito (1950) and by Sadanaga & Takeuchi 
(1961), but here the aforesaid structural properties of 
ZnS polytypes are deduced as follows. 

Let a system of 180 ° rotational microtwins with nl 
layers in the (A --~ B --+ C --+ A . . . )  stacking sequence 
and n2 layers in the (A--+ C--~ B--+ A . . . )  stacking 
sequence repeat periodically along the <111) direc- 
tions of a f.c.c, structure• Depending upon whether 
n l - n 2  = 3n or not (i.e. the first and last layers of the 
combined twin system are in different or in the same 
orientation), the polytypes of the type N H  or 3NR 
with N = n l + n 2  will be formed• Every layer (A, B or 
C) in this notation represents a ZnS double layer and 
the sense of the Zn ~ S vector remains in the same 
direction throughout the structure. The Zhdanov no- 
tation of these polytypes can then be written as (nlnz) 
or (nln2)3. As a f.c.c, structure or its twin can only be 
imagined when it has at least three layers (ABC or 
A CB) in the close packed assembly, the lowest value 
of n~ or n2 (i.e. the average number of layers in each 
twin block) can be shown not to fall below 2. For 
example in the 10H polytypes with stacking sequence 
A B C B A C B A C B A  . . . ,  the C layer is common in both 
the sequences (i.e. ABC and C B A C B A C B A  . . . ) .  
Although A B C  is in the sequence of a f.c.c, structure, 
the value of nl is 2 and that of H 2 is 8. Thus in general 
the values of nl and n2 will subject to 

nl, n2 = 3n' or 3n' + 1 (1) 

where n' is an integer >_ 1. 
It appears from equation (1) that all the numbers 

except 1 can appear in the Zhdanov symbol ofpolytypes 
in the f.c.c, twin representation. 

In every assembly of twins, each twin block (i.e. 
each block in 180 ° rotational twin orientation to the 
other) contains one layer in the h.c.p, stacking se- 
quence. For example, in 6H with stacking sequence 
ABCA CBA . . .  which contains two twin blocks (ABCA 
and ACBA) ,  the underlined layers As are in the h.c.p. 
stacking sequence. If an N-layered polytype contains 
nT twin blocks, then the percentage, p, of layers with 
f.c.c, stacking sequence can be written as 

p = [ 1 - n r / N ] x  100 (2) 

where 2 < nT < N]2. 
The limiting value of n f  has been imposed from 

polytypic structures. Taking minimum and maximum 
values of nT as 2 and N/2, respectively, it is easy to see 
that all possible values ofp  will lie between 50 and 100. 

From Table 1, one can see that the results based on 
periodically repeated f.c.c, type twins along the (111> 
direction are in agreement with the observed structure 
of polytypes and thus it is expected that a mechanism 
which can generate such a type of twins should oper- 
ate in 2H type crystals. 
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Table 1. ZnS polytypes 

Sample Ramsde l l  Zhdanov % layer in f.c.c. 
No. notation notation orientation 

1 4H (22) 50.0 
2 6H (33) 66.6 
3 8H (44) 75.0 
4 9R (21)3 33.3 
5 10H (55) 80.0 
6 10H (82) 80.0 
7 12R (31)3 50.0 
8 14H (77) 85.7 
9 14H (5423) 71-5 

10 15R (32)3 60.0 
11 l 6H (88) 87.5 
12 18R (42)3 66-0 
13 20H (533423) 70.0 
14 20H (522362) 70.0 
15 21R (3112)3 42.8 
16 24H (7557) 83.3 
17 24H (9564) 83.3 
18 24H (16422) 83.3 
19 24H (71052) 83.3 
20 24H (8943) 83.3 
21 24H (33242253) 66.6 
22 24H (33422433) 66-6 
23 24H (159) 91.6 
24 24R (53)3 75-0 
25 26H (17423) 84-6 
26 28H (9559) 85.7 
27 36R (6222)3 66.6 
28 48R (97)3 87.5 
29 48R (124)3 87.5 
30 48R (7423)3 75.0 
31 48R (433222)3 62.5 
32 60R (182)3 90-0 
33 60R (11432)3 80-0 
34 60R (522353)3 70.0 
35 72R (61152)3 83.3 
36 72R (9546)3 83.3 

Note: Remaining ZnS polytypes follow the same 
those are not listed here. 

trend and 

Generation mechanism of periodic f.c.c, microtwins 

Normally the crystals of ZnS showing polytypic 
growth have been synthesized from the vapour phase 
above the temperature of the 3 C to 2H phase transfor- 
mation. At this temperature only the 2H phase is 
expected to be stable. Thus to explain the origin of 
periodic microtwins (the polytypic growth) the fol- 
lowing assumptions are made: 

(i) At an elevated temperature (> 1020°C) the ZnS 
crystals of the 2H type start growing. The stacking 
faults are introduced during the growth. 

(ii) Either because of the temperature inhomogeneity 
or the presence of trace impurities, which may change 
the conditions of phase stability, complex mechanical 
stresses are set up in the crystal flake. These stresses in 
turn result in slips at alternate layers and axial screw- 
dislocations (i.e. along the [0001] axis) in the 2H crystal 
containing growth faults only. 

This causes polytypes to generate during the growth 
process of crystals. Slips at alternate layers cause 2H 
crystals to transform into a 3C structure (Blank, 
Delavignette & Amelinckx, 1962). However, when the 
crystals contain growth faults, this process produces a 

3C structure on either side of the faults in 180 ° rota- 
tional twin orientation, e.g. 

o r  

h h h h h k h h h h h h  
A B A B A B C B C B C B  

C A C A B A B A B A  

B C A C A C A C  

B A B A B A  

C B C B  
+ 
A C  

k k k k k h k k k k k k  

A B C A B C B A C B A C  

Here in the (hk) notation h denotes the layer in h.c.p. 
orientation and k denotes the layers in f.c.c, orienta- 
tion. 

When an axial screw-dislocation operates simul- 
taneously with slip at alternate layers, it produces a 
growth step, which consists of a f.c.c, twin structure, 
on the (0001) surface of the crystal. The step provides 
the site for perpetual growth. The growth continues 
and the step spirals around the axis of screw disloca- 
tion. This causes the twins to grow periodically. When 
the first and the last layers of the growth step containing 
twins are in the different stacking sequence, the poly- 
types with hexagonal symmetry are generated. When 
the bottom and the top layers are in the same orienta- 
tion i.e. A, A ; B, B or C, C, the spiral growth produces 
polytypes with rhombohedral symmetry (Krishna & 
Verma, 1965). Thus the 14H polytype with Zhdanov 
symbol (77) can generate from the faulted 2H polytype 
as follows" 

or  

h h h h h h h k h h h h h h  
A B A B A B A B C B C B C B  

C A C A C A B A B A B A  

B C B C A C A C A C  
m 

A B C B C B  

A C A C  

B A  

k k k k k k k h k k k k  

C B  

A C  

B A  

C B  
k k  

A B C A B  C A B  A C B  A C B, A B 

or 14H (77). 

(I) Slip at 
alternate 
layers 

(II) Spiral 
growth 
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The origin of rhombohedral polytypes can be worked 
out similarly. 

It should be noted that the faults in the original 2H 
crystals have been assumed to be growth faults. If, on 
the other hand, the deformation faults are assumed to 
be present, the aforesaid mechanism would lead to the 
polytypic structures which contain '1' in the Zhdanov 
symbol. However, as ' I '  is hardly ever observed in ZnS 
polytypes, the contribution of the deformation faults 
has been neglected. 

Discussion and conclusion 

The results derived on the consideration of f.c.c, type 
microtwins along the (111) axes seem to be in close 
conformity with the structural characteristics of the 
ZnS polytypes observed in practice. It should be noted 
that in contrast to Mardix et al. (1968) and Daniels 
(1966), the cause of the polytypic growth is assumed to 
take place during the growth period but not at a stage 
when the crystals have already grown. As speculated, 
the type of paired numbers (nl, n2) in the Zhdanov 
symbol and percentage, p, of the layers in f.c.c, stacking 
sequence can completely be represented by the twin 
model. The value of p which is found always to be 
equal to or greater than 50% probably implies that the 
polytypic growth in ZnS results in requirement of 
complete transformation from the 2H to the 3C struc- 
ture. However, the completion of the transformation is 
prevented and the process of slip (at alternate layers) 
accompanied by screw dislocations causes the faulted 
2H structure to transform into periodically repeated 
f.c.c, type twins or polytypes. This case seems to differ 
from the polytypic growth in CdI2. As shown in 
Table 2, p is in almost all cases equal to or less than 
50% and normally contain the (11) and (22) units. Thus 
in this compound the polytypic growth can be treated 
as the consequence of structural transformation in 
the 4H and 2H structures by the dislocation mecha- 
nism. 

Table 2. CdI2 polytypes 

Sample Ramsdell Zhdanov % layer in f.c.c. 
No. notation notation orientation 

1 2 H  (1 I) 00"0 
2 4 H  (22) 50"0 
3 6Ha (2211) 33"3 
4 6Hb (33) 66-6 
5 8H (22) (11)2 25"0 
6 10H (22)2(11) 20"0 
7 12Ha (222123) 50.0 
8 12Hb (21211212) 33"3 
9 12He (22)2( 11)2 33" 3 

10 14H (22)3(11) 42-9 
11 22Hc (11)5(2211)2 18.2 
12 26He 2(11)22(11)32(11)22(11)2 15"4 
13 26Hd (22)6(11) 46" 1 
14 28H (22)6(11)z 42"8 
15 8H (121121) 25-0 
16 24Hg (2222211)2 41 "7 
17 12R (13)3 50.0 
18 3 OR (221212)3 40-0 
19 42R (22221212)3 42.8 

The mechanism proposed in this paper differs con- 
siderably from those proposed by Daniels (1966) and 
Mardix, Kalman & Steinberger (1968). In these cases, 
the mechanisms are assumed to operate after the time 
when the crystals have completed their growth. In 
the case of Daniels the cause of the periodic occurrence 
of faulting is quite clear while in the case of Mardix et 
aL (1968) the process which causes the slip to occur 
periodically is not mentioned. However, the periodic 
occurrence of faultings alone is not enough to explain 
the polytypic growth in a compound. The generation 
of various structures in terms of Zhdanov symbol 
which usually occur in polytypes of a given compound, 
should also be explained at the same time. In the case 
of Daniels (1966) the presence of the (11) units is 
inherent but it is hardly ever observed in ZnS poly- 
types. It is also not very difficult to see that the process 
of periodic slips in most of the cases will generate poly- 
types (starting from defect-free 2H crystals) which will 
certainly contain the (11) units or at least 1 in the Zhda- 
nov symbol. It should be pointed out, therefore, that 
both of these mechanisms will generate polytypes 
from the 2H phase, but the type of structures observed 
in ZnS polytypes generally do not result from these 
mechanisms. Contrary to the above, the mechanism 
presented in this paper operates while crystals of the 
2H type are growing, and the structures generated 
from faulted 2H crystals are in close conformity with 
the structures of observed polytypes. 

In the present treatment the contribution of the de- 
formation faults has been neglected. Normally only 
two kinds of stacking fault (i.e. extrinsic and intrinsic 
faults) can be associated with the h.c.p, structures. 
While the extrinsic fault can be formed by inserting a 
close-packed layer, the intrinsic faults can be introduced 
in h.c.p, structures in the following two ways: 

(i) By only shearing the part of perfect h.c.p. 
structures, i.e. 

A B A B A B A B  
A B A B C A C A  

h h h k k h h h  
(1 1 3 1 1  

(h k notation) 
) (Zhdanov notation) 

(ii) By removing a close packed layer from the per- 
fect h.c.p, structures and then by shearing, i.e. 

A B A B A B A B  
A B A B  B A B  

A B A B  C B C  
h h h k  h h h  

( 1 1  2 1 1  ) 
(h k notation) 
(Zhdanov notation) 

The intrinsic faults produced according to (i) and 
(ii) are known as deformation and growth faults, 
respectively. However, these names are misleading as 

A C 27A - 2 
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the growth faults may appear during deformation and 
the deformation faults during growth of the crystals. 
From the point of view of stacking fault energy, the 
growth faults are energetically more economic than 
deformation and extrinsic faults (Hirth & Lothe, 
1968). Therefore the major contribution to the growth 
of polytypes is expected from the growth faults. The 
contribution of faulting due to deformation or slip, 
however, may not be neglected completely at a later 
stage when the crystals are cooling. Probably, this is 
the reason why a few exceptional polytypes (9R, 12R 
and 21R) are found to contain 1 in the Zhdanov symbol 
with p less than 50%. These polytypes may result from 
the periodic slips in the close-packed planes of some 
other polytypes and their structures may be explained 
according to the present mechanism. Therefore, the 
polytypes 21R may originate from another polytype 
7H with Zhdanov symbol (52) as follows: 

to most stable polytypes. However, polytypes generated 
in this case will assume the same structures as the 
parent polytypes. Applying this to ZnS, it is evident 
that the polytypic structures produced by screw dislo- 
cations with the Burgers-vector strength equal to the 
unit-cell height of f.c.c, microtwins, will be more 
stable than those structures produced by the disloca- 
tion with a Burgers vector strength equal to a fraction 
of unit cell height of the proposed microtwins. In 
other words the growth of the f.c.c, microtwins as a 
whole is more probable because this involves the screw 
dislocations with the smallest possible gap in the sub- 
stratum (f.c.c. twin). 

Until this paper, no direct observation supporting 
the mechanism proposed above had been made. 
However, it should be pointed out that this mechanism 
will produce morphological features on the prismatic 
planes similar to those discussed by Daniels (1966) and 

A B C A B C B A B C A B C B A B C A B C B A B C A B C B A  

4' 
C A  C B  C A  B C A  C B  C A  B C A  C B C A  B C A  C B  

4' 
A B A C A B C A B A  C A B C A B A C  

4' 
B C B A B C A B C B A  

4, 
C A C B  

A B C A  C A  C B  C A  B A  B A  C A B  C B  C B A  B C A  C A  C B  

or 21R (3112)3. 

(Slip has occurred at the underlined layers.) 
The frequency with which a polytype is found will 

depend upon the frequency at which slip at alternate 
layers and screw dislocation take place simultaneously 
in the 2H type crystals containing growth faults. The 
faulting at the later stage of the growth of polytypes 
will tend to transform a polytype into another ordered 
(polytype) or disordered structure. 

The problem of the stability of ZnS polytypes 
generated by the proposed mechanism can also be 
analysed in terms of Mitchell's (1957) theory of screw 
dislocation. According to this theory, the screw dislo- 
cations in SiC polytypes (6H, 4H and 15R) are accom- 
panied by a horizontal shift and a corresponding gap 
in the substratum. The size of the gap (or horizontal 
shift) depends upon the Burgers vector strength of 
the screw dislocation. Mitchell in his work assumed 
that only small gaps like R1, Rz and N in a 6H structure 
can lead to stable polytypes. From his assumption, 
therefore, it appears that the smaller gap size will 
lead to more stable structures. Taking this assumption 
as correct, one can notice that the N type of gap, which 
is smallest in size and produced by screw dislocations 
with the Burgers vector strength equal to or a multiple 
of the unit cell heigth of the parent structures, will lead 

Mardix, Kalman & Steinberger (1968). If the screw 
dislocation mechanism holds good for the growth of 
ZnS crystals, the observation of spirals on the (0001) 
face of the pclytypes can be taken as evidence in favour 
of it. From the consideration discussed in § 3, it is 
highly probable that the proposed mechanism will 
leave some markings of the spiral growth on the (0001) 
face of the polytypes. In this respect, the observations 
of spirals by Bhide (1957) and Votava, Amelinckx & 
Dekeyser (1953) on ZnS crystals may be taken as in- 
direct and partial verification of the proposed mecha- 
nism. 

The author is grateful to the University Grants Com- 
mission of India for financial assistance during the 
tenure of this work. 
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Crystal-structure analysis via the Patterson function may be considered as consisting of two distinct 
steps. In the first step, the weighted periodic vector set is determined by establishing the location of each 
peak in the Patterson function. In the second step, the weighted periodic vector set is analysed to 
determine the crystal structure. The second step apparently offers little difficulty, since existing proce- 
dures for the analysis of periodic vector sets appear to be capable of dealing with complex structures, 
provided of course that the vector set is accurately determined. Unfortunately, a general and powerful 
method for the location of peaks in the Patterson function has not yet been developed and therefore it 
is the first step in the solution process which now prevents the formulation of a general method of struc- 
ture analysis via the Patterson function. Such a method would be extremely useful, since the Patterson 
function is not restricted to centrosymmetric structures. In the present paper a way of representing the 
Patterson function as a linear generalized polynomial in a system of independent interatomic functions 
is developed. The coefficients of this polynomial determine the weighted periodic vector set. This ap- 
proach, therefore, reduces the problem of extracting the periodic vector set from the Patterson function 
to a relatively simple problem in linear approximation, namely the determination of the coefficients of 
a generalized polynomial. 

Introduction 

During the past fifty years many methods for the solu- 
tion of crystal structures have been proposed. These 
existing methods are all limited to crystals with special 
characteristics, and a general method, capable of deal- 
ing with virtually any sort of crystal in a routine man- 
ner, remains to be discovered. 

In order to formulate a general and practical method 
of structure analysis, one would naturally think of 
working in terms of the Patterson function, since this 
function is not restricted to centrosymmetric structures. 
It is now well known that a weighted periodic vector 
set (Buerger, 1959) can be associated with the Patterson 
function of an arbitrary crystal. In the following dis- 
cussion, weighted vector sets will often be referred to 
simply as periodic vector sets, since unweighted sets 
will never be considered. For a crystal containing N 
atoms per unit cell, the periodic vector set consists of 
N periodic images of the crystal structure. The essence 
of the phase problem lies in the separation of the var- 
ious points of the periodic vector set into these images. 

This separation can be accomplished for periodic vector 
sets by the image-seeking method of Buerger (1950), 
even though this method was originally devised in 
terms of non-periodic vector sets. Tokonami & Hosoya 
(1965) have developed a different procedure for un- 
ravelling periodic vector sets. Their method depends 
explicitly on certain periodic characteristics of the peri- 
odic vector sets. It also offers certain computational 
advantages over the image-seeking methods. 

These considerations indicate that crystal-structure 
analysis via the Patterson function may be viewed as 
consisting of two distinct steps. In the first step, the 
peaks in the Patterson function are located; this deter- 
mines the periodic vector set. In the second step, the 
periodic vector set is solved to yield the crystal struc- 
ture. Unfortunately we do not have, at the present time, 
a general and practical method for the location of peaks 
in the Patterson function. Consequently, it is the first 
step in the solution process, that of locating the peaks 
in the Patterson function, which now prevents the de- 
velopment of a general method of structure analysis in 
terms of the Patterson function. It would seem that if 
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